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An analytical description is presented of the process of liquid evaporation from 
capillaries of variable cross section at temperatures close to the boiling point. 

In real capillary-porous bodies the pore form is usually not cylindrical, and drying 
processes cause this form to change with time due to structural changes in the skeleton of 
the body. The present study will investigate evaporation of a liquid from capillaries of 
variable section, the radius of which r = r(x, l(t)). The gas mixture flow in the capillary 
will be assumed one-dimensional and steady state. The binary gas mixture into which evapora- 
tion occurs consists of vapor molecules (the first component) and molecules of the gas form- 
ing the surrounding medium. The gas molecules do not undergo a phase transition on the 
liquid surface. The process will be assumed isothermal, and the Knudsen number significantly 
less than unity. 

The molecular flux densities for vapor G~ and gas Ga in a capillary of circular section 
will be described in the follow~ng manner: 

r 2(x, l) kY  dn de I 
G1 : no1 §  - -  , 

8~ Ox dx 

r2-(x, l) kT  dn + nD de2 
G 2 = 1~C2 

8~1 dx dx 

(i) 

(2) 

In the general case the capillary radius r is a function of coordinate x and position of the 
phase boundary ~. For constant r, over the entire course of the process Eqs. (i), (2) trans- 
form to the corresponding ones for a cylindrical channel [I]. We choose for the positive 
direction of the coordinate along which vapor--gas mixture flow takes place the direction 
from the capillary mouth to the meniscus. The boundary conditions for Eqs. (i), (2) have the 
form 

C 1 (X : O) = Clo, c l ( x  : l) = Clz. (3) 

where c~ l = Pls/P. 

Values of the relative concentrations of the external gas at the capillary mouth (cao) 
and meniscus (ca~) are found from the condition 

c 1 + c2 = 1. ( 4 )  

As was shown in [2], viscous flow in a channel of radius r may be considered as steady 
state given the condition x > 0,I Re'r. Then at a distance :Idxl (since Re = vr/~) the in- 
equality 

Idx[ ~ 0.2 Re ]dr[ 

must be fulfilled, whence 

Idr 5 
~ m a x  {Re} " (5) 

Equation (5) is a necessary condition for definition of the region of applicability of Eqs. 
(I), (2). 

For steady-state flow the flow rate of vapor and gas through the channel section per 
unit time is a constant quantity: P1 = GIS(x, l) = const~, Fa = GaS(x, l) = consta. Then 
the total flow of vapor gas mixture r = Fx + Pa can be written with consideration of Eqs. 
(i), (2) in the form 
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r ~ (x, l) kT  dn 

8q dx 

In der iv ing Eq. (6) i t  was considered that  S(x, l )  = vr2(x, ~). 
Po to p~ with the replacement n = p/kT leads to the expression 

r - p l -  p~ 
t6kTU~ (t) ' 

where 

(6) 

Integration of Eq. (6) from 

(7) 

I 

Ua=U~(a=4) ;  U~= 1 ~ dx 
o 

a J r ~ (x, l)q 
0 

In the i n t eg ra t i o n  i t  was assumed that  the v i scos i ty  of the mixture is  equal to some average 
value (for example averaging could be performed for p a r t i a l  pressures of vapor and gas above 
the meniscus and at the cap i l l a ry  mouth [3]) ,  which is  constant for a f ixed phase boundary 
pos i t ion .  

Equation (6) also permits us to transform Eqs. (1), (2): 

F 1 ~- c f  + n~r ~ (x, l) D dc----L , (8) 
dx 

F2 = c2F + nnr~ (x, l) D dc~ (9) 
dx 

The product nD is  a constant [1, 4]. In t eg ra t ion  of Eqs. (8), (9) leads to the expressions 

(io) 
c~z--cloexp[ FU~(/) ] 

nD F, 
F~= l - -exp[  FU~(/) ] ~ D  

c~z--c2oexp[ FU~(/) ] 
p~ = nD p. 

1 - - exp [  PU~(I) ] n D  

(11) 

The condition that the gas does not pass through the phase boundary allows us to express the 
total flow using Eqs. (Ii) and (4) as 

n__.~D In ( 1 - - p ~ o / p o )  (12) 
r = U~ (t) _ -- P~/Pz 

Setting Eqs. (7) and (12) equal to each other, we obtain a transcendental equation for the 
unknown pressure value above the meniscus PZ: 

p~ - -  p2o nD ( 1 - -  Plo/Po / "  (13) 
16kT~]U~ (l) = ~ In ,, 1 -- PlsIPz / 

As follows from Eq. (13), the value of the total pressure above the phase boundary in a 
variable section channel depends not only on the channel radius and the partial pressures of 
the binary mixture components (as is true of a cylindrical capillary [5]), but is also a 
function of the meniscus coordinate. 

Substituting Eq. (12) into Eq. (i0) gives us the expression 

r1= n.---~D l n ( 1 - - p l o / P o  ) (14) 
U~ (O l -- p181p~ " 

Here PZ ~ Pts. For sufficiently large radii (U2(Z)/U4(1) § ~), it follows from Eq. (13) 
that PZ + Ps" In this case, as is evident from Eq. (7), 

2 2 

FI = pIs --p0 
16kT~lU~ (1) (15) 

The expressions for the flow, Eq. (14) or (15), together with Eq. (13), allow determination 
of the law of change of meniscus position with time t in a capillary of length L. This de- 
pendence is found from the law of conservation of liquid mass 
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where M = u9Q; Q---- 
L--I  

i' r"- (tj, / )  dry. Hence 

dM 

dt 
. . . .  Fml, (16) 

0 
I = ~,__~o C ~p (t) dt, (17) 

tL~l ~ ~ ' 

where ~ (2) - dQ/dl. Equation (17) allows calculation of the time required for liquid evapora- 
tion from a channel of variable section. 

We will consider some special cases of change in capillary dimensions. Thus, if the 
radius changes identically over the entire length during the evaporation process, then 

(p (l) = 2r (l) (L - -  t) - - d r  _ r ~ (l), 
dl 

l 1 
(t) = - - ,  (0 = 

~r~ (0 ,~r ~ (l) 

Equat ion (13) f o r  Pl  t r ans fo rms  to  the  cor respond ing  equa t ion  p r e s e n t e d  in  [ l ,  6] f o r  each 
f i x e d  v a l u e .  

For a c o n i c a l  c a p i l l a r y  which expands as the  phase boundary r e t r e a t s  i n to  the  medium, 
d e s c r i b e d  by the equa t ion  r (x)  = ro + b ( l ) x  (where ro i s  the  i n i t i a l  c y l i n d r i c a l  c a p i l l a r y  
radius, b(1) is the conicity, which varies during the evaporation process), the functions 
~(~), U4(~), U2(1) are equal to: 

q) (/) = - -  [r~ + b (L - -  l)12 --k (L - -  O ' db [ 2 b(L--Z)] 
7 r~ 

g (0 - (to + hip ' 

1 
( 0  = 

z~ro (to -t- b/) 

In particular, for liquid evaporation from a conical capillary with constant conicity over 
its entire length (for ro we may take the value of the radius at the capillary mouth) in the 
latter equations we take b = const > 0 and db/dl = 0. 

As an example, we will consider a conical capillary with constant low conicity (bL << ro). 
We also assume that the radius in all sections is sufficiently great that Pl -~ P:s. In this 
case the evaporation time is given by 

t =  r 2 . 8pkTl2rl2 ( 1 _  2bL 2bl ) 
ma o bol.~- p2) ro 3% 

The relative time for evaporation from a conical capillary as compared to the evaporation 
time to from a cylindrical capillary of radius ro is given by the expression 

t 2bL 2bl 
- - 1  

to ro 3% 

Thus, for r0 = i0 -s m, L = I0 -= m, b = i0 -~ the total evaporation time for a conical capil- 
lary comprises 74% of the evaporation time from a cylindrical capillary of radius ro. 

NOTATION 

Gi, molecular flow density of component i in the gaseous phase; i = i, vapor; i = 2, 
surrounding gas; c i = pi/p; Pi, partial pressure of component in mixture; p = p, + p2; n = 
nx + n=; n i, molecular concentration of component in mixture; ~, capillary radius; x, co- 
ordinate; k, Boltzmann's constant; T, temperature; ~, dynamic viscosity coefficient of mix- 
ture; D, binary diffusion coefficient; Pxs, saturated vapor pressure at process temperature; 
Re = vr/~, Reynolds number; v, hydrodynamic velocity of gas mixture; ~, kinematic viscosity 
coefficient; ri, molecular flux of component i; S(x, l) = ~r2(x, Z), channel cross-sectional 
area; t, time; L, capillary length; M, liquid mass; m~, molecular mass of vapor substance; 
0, liquid density; subscripts: 0, l, values at capillary mouth and meniscus, respectively. 
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NONSTEADY HEAT AND MOISTURE TRANSFER IN CAPILLARY-POROUS 

COLLOIDAL BODIES WITH CONVECTIVE DRYING 

B. A. Todorov UDC 66.047.37 

A mathematical model describing the distribution of moisture content in the region 
of a moist state of capillary-porous colloidal bodies is proposed. 

Formulation of the Problem 

The drying of moist capillary-porous colloidal bodies is a typical nonsteady process 
occurring in the presence of transfer-potential gradients. The moisture-transfer potential 
for the given bodies is assumed to be the chemical potential of water vapor as a function of 
the temperature and partial pressure of the vapor. In the hygroscopic region, it may be ex- 
pressed using the temperature and moisture content of the body. Taking this into account, 
the system of differential equations 

Ot av2t § ~ro au (1) 
& C O~ 

OU 
_ Dv~U + D6v~t, (2) 

& 

describing the interrelated phenomena of heat and moisture transfer, was derived in [i]. 
Numerous solutions of this system of equations with different boundary conditions are found 
to be in good agreement with the experimental results of [2-7]. 

For wet bodies, the chemical potential is equal to the potential of free water, i.e., 
it is constant and cannot be used as the moisture-transfer potential. This explains the con- 
siderable deviation in the moisture-content distribution obtained from the solution of Eq. 
(2) from the experimental values in [2-7]. 

A mathematical model derived under the following assumptions is proposed to describe 
the moisture distribution in capillary porous bodies: 

I) the transfer of capillary-bound water is not diffusional; 

2) capillary-bound water is characterized by a density p, which is equal to the mass of 
this water per unit volume of the body; 

3) nonsteady transfer of the moisture occurs under the influence of the combined action 
of the motive forces (pressure and temperature gradients, capillary potential, etc.). It is 
assumed that the resulting flux may be expressed using the rate of transfer Vca p and the 
density p by the equation 
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